
MODIS QUARTERLY REPORT - MARCH 1992

DR. ROBERT H. EVANS
UNIVERSITY OF MIAMI

RSMAS/MPO

NAS5-31362

==

Due to the interlocking nature of a number of projects, this and subsequent
reports will contain coding to reflect the funding source. Modis funded activities
are designated with an M, SeaWIFS with an S, Pathfinder with a P, and
Headquarters with an H.

== Given the
length of this report, it deviates from the requested format in that each section
contains the concepts, status, problems, and future efforts. There are three
sections:

I. Database
II. Client/Server
III. Data Matchup

I. DATABASE SECTION

I.a NEAR TERM OBJECTIVES
I.b OVERVIEW OF CURRENT PROGRESS
I.b.1 Database Creation
I.b.2 Thumbnail Sketch
I.b.2.1 SATELLITE Database
I.b.2.2 AUTOPROC Database
I.b.2.3 IN_SITU &ASSOCIATED Database
I.b.2.4 MATCHUP Database
I.b.3 Automatic Processing
I.b.3.1 Pre-Processing Actions
I.b.3.2 mcp
I.b.3.3 dbbat
I.b.3.4 Client/Server
I.c FUTURE ACTIVITIES
I.d PROBLEMS ENCOUNTERED

===

I.a NEAR TERM OBJECTIVES

Database concepts will continue development and the integration of the database
with the client/server will be expanded. Contents of the various databases will
be augmented.

I.b OVERVIEW OF CURRENT PROGRESS

Overall, there are five databases planned: 1. A SATELLITE database containing
information about the satellite scenes that have been spooled, ingested and are in
various stages of processing; it will also contain the archive information of the
products. 2. An AUTOPROC database will carry the information needed for the
automatic processing of the satellite data and track the scenes as they pass
through the processing stages. 3. An IN_SITU database will hold information on
buoys, drifters, ship data, etc., all in situ measurements. 4. An ASSOCIATED
database will deal with environmental data that cannot be termed
'measurements,' such as gridded fields and numerical model output. 5. A
MATCHUP database, will link the SATELLITE data and the environmental
surface [in situ] data used in calibration and validation.

I.b.1 SQL Database Creation (M)

The SATELLITE and AUTOPROC databases are created using batch jobs. Each
table in a database is created using an SQL procedure file, which also inserts
static data into those tables that may be used for field validation (satellite, sensor,
archive, etc.).

I.b.2 Database Survey

I.b.2.1 SATELLITE Database (M)

Each satellite pass (or scene) is represented by a MAIN record in the database.
The MAIN record may be generated in a number of ways: at the time of
spooling, the time of ingestion, or later. This MAIN record contains all
information about the scene (satellite, sensor, transmission, etc.).

Numerous tables also reside in the SATELLITE database, to be used for
validation of fields on record entry and during database queries, and to track
archive information. The majority of these tables will be used for field validation.

I.b.2.2 AUTOPROC Database (M)

This database contains the same relations as the SATELLITE database, and
additional tables containing the automatic processing information. If a scene is to
be processed as a single unit, one PROCESS CONTROL record (PCR) is created
in a PROCESS-CONTROL relation. This record contains the information used in
automatic processing, such as procedure(s) to be used, process step completed,
and so forth. If a scene is too large to be handled easily as a whole, it may be
broken up into pieces for processing, currently at the time of ingest, and a PCR is
created for each piece. The processing procedures themselves are stored in the
database.

I.b.2.3 IN SITU & ASSOCIATED Databases (P)

The IN SITU and ASSOCIATED databases are in early development, and may
undergo significant changes. IN SITU is being designed as a general-purpose
database that must accommodate many different types of data.

I.b.2.4 MATCHUP Database (P)

The MATCHUP database contains co-temporal, co-located satellite and in situ
data. A prototype of a MATCHUP main record exists. Decisions and final
development of the MATCHUP database can be finished when the automatic
processing of the satellite data is complete. The MATCHUP process is more
completely covered in Section III.

I.b.3 Automatic Processing (M)

The automatic processing capability controls the batch processing of satellite
data, and is currently working in the SATELLITE database, although it should be
adaptable to processing other types of data.

I.b.3.1 Pre-Processing Actions (M)

There are three steps that must be done before the automatic processing can be
used: the database must be created, and a MAIN record and a PROCESS
CONTROL record (PCR) must be entered into the database.

I.b.3.2 Master Control Program (mcp) (M)

A command file is used to start the Master Control Program (mcp) in batch. This
program directs the spawning of other batch jobs, one for each PCR that is ready
for processing. That is, mcp queries the database for the next PCR that is ready to
be processed, and submits a batch file (dbbat) assigned to process the file
associated with that PCR.

mcp keeps track of the number of jobs that are submitted, executing and
completed. In the final form , mcp will retrieve not only the next record to be
processed, but also the processing steps to be used.

I.b.3.3 dbbat (M)

When mcp spawns off a dbbat job, that job is associated with one PCR in the
database. It will be modified to accept the processing steps from mcp, and then
start DSP and execute the required steps.

I.b.3.4 CLIENT/SERVER Processing (M)

The autoprocessing software is currently working on a VAXStation 3200 running
VMS 5.4 and using RDB/VMS as the database engine. The conversion to
distributed processing on UNIX computers is in progress. The client/server
database is more completely covered in Section II.

I.c FUTURE ACTIVITIES

The database will continue to expand in contents and capability.

I.d DATABASE PROBLEMS

I.d.1 Inefficient Schema

After consultation with a database expert, it was determined that the extensive
use of keyword codes in the database schema, while saving disk space, would
slow down queries and modifications of the database. Therefore, the schema
were revised to eliminate the use of table codes. This involved not only the
revision of the database creation files, but also the in-house interface (an
extensive set of programs and subroutines) that is currently used with the
satellite and autoprocessing relations.

I.d.2 RDB/VMS Contact only.

Previously, the database could only be used under a VAX RDB/VMS database.
The creation files were in RDB's RDO Interactive Interface files, and static data
was loaded by special purpose files using GENERIC, one of the in-house
programs. Additions to, modifications of, and retrievals from the database were
made using the in-house interface, which used the RDB/VMS-specific RDML
(Relational Data Manipulation Language) statements embedded in FORTRAN
programs. Currently, the creation and loading files have been converted into
SQL procedures. It is intended to replace the RDML statements with their

equivalents in embedded SQL. This can be done and tested on the VAX
machines, as our VMS/V5 machine has an RDB database that includes an SQL
interface. Once this conversion is made, the system should operate on any SQL-
based database.

I.d.3 VAX/VMS use only.

The in-house interface makes extensive use of VAX/VMS Operating System
library calls and error-handling. These VMS-specific calls can be replaced by
more general use subroutines that are compatible with any operating system.

===

II. CLIENT/SERVER SECTION (M)

II.a NEAR TERM OBJECTIVES
Development of the design and implementation will be extended; further testing
of client server will be continued.

II.b OVERVIEW OF CURRENT PROGRESS
II.b.1. Client/Server Concept
II.b.2. Our Proposed Client/Server Model II.b.3. Current State
II.c FUTURE ACTIVITIES
II.d PROBLEMS ENCOUNTERED

II.a NEAR TERM OBJECTIVES

Continued development of the client/server is the primary objective. Assuring
adequate resources for design and implementation of the monitoring functions is
also an important near term goal.

II.b OVERVIEW OF CURRENT PROGRESS

II.b.1 Client/Server Concept

The most commonly used paradigm in constructing distributed applications is
the client/server model. In this scheme, client applications request services from
a server process. Nominally, a server provides network services; a network
service is a collection of one or more remote programs. These remote programs
implement one or more remote procedures. The client and server operation is
based on a known set of conventions that must be implemented at both ends of a
connection before service may be rendered (and/or accepted). This set of
conventions comprises a protocol that may be symmetric or asymmetric.

RPC, Remote Procedure Call, is used to implement the client/server model. RPC
is a high-level communications program that allows network applications to be
developed using specialized procedure calls, providing a degree of
independence from the underlying networking mechanisms. The RPC model is
similar to a local procedure call model in that one thread of control logically
winds through two processes -- the client's process (the caller) and the server's
process (the procedure called). The reliability of an RPC
model depends on the reliability of the transport protocol underneath it. For this
reason, this implementation RPC is running on top of TCP/IP.

The caller sends a message containing the required parameters for the requested
procedure to the server process and awaits the results. On the server side, a
process is dormant waiting the arrival of a call message; upon arrival, the server
process activates, extracts the procedures' parameters, computes the results,
sends a reply message, and is deactivated. Thus the server process activates,
services the client request, and performs whatever appropriate actions the client
requested. Once the reply message is received, the caller's execution resumes and
the results are processed.

II.b.2 Proposed Client/Server Model

Our mcp [master control program] system is a distributed application over a
VAX/VMS and UNIX network. The complete mcp system consists of the
database, resource monitor, dbbat [a command procedure generator],
performance monitor and mcp itself. The monitor programs are machine/system
dependent.

The database and its attendant programs, acting as the server, initially will be
VAX resident. The rest of the mcp system resides on UNIX platforms where
multiple copies will be able to access the database. The connection between these
two parts is accomplished using the client/server mechanism. This allows more
efficient use of resources by moving computations previously done in the
VAX/VMS to UNIX systems and creating a distributed client environment.

The mcp is responsible for the control of processes accessing the database. When
mcp starts, it will enter an endless loop executing periodic calls to the resource
monitor to determine whether there are sufficient resources to start a new dbbat
process. If insufficient resources are available, then the mcp process will return to
an inactive state. Otherwise a dbbat process will be started. The dbbat process
will query, through the client/server mechanism, the database about the status
of tasks, if any, to be performed. Parameters encoded in the message include
service type and server's name [in case of multiple servers]. We have defined
three service types at this time. Type 1 is the initial client contact [dbbat] with the
database, and requires the database to be invoked. Type 2 reflects continuing
dbbat communication with the database, but the database has already been

invoked. Type 3 indicates a job has completed in UNIX environment and the
database table, process_control, needs to be updated to reflect the completion.

When a server activates, it provides service to the client by running the
procedure that will contact the database. If the client requests a type 1 service
then a procedure to invoke the database will be executed first.

With type 1 or type 2 service requests, a procedure, dbconnect, will execute
which in turn runs db control to check the process control table first to determine
status. If there are records marked SUBMITTED, an array is created containing
steps to be carried out to process the specified data file; the array will be
converted into the reply message. If the client requests a type 3 service, i.e.,
update the database that a job has completed, the job status is changed to FINISH
in the process_control table.

To avoid creating excess traffic over the network, we plan for the client/server to
communicate only twice for each job. First communication is the client's request
for a job and the server's response in returning the steps of a job from the
database over the network. Second communication occurs when the job
completes and dbbat sends a message to update the job's status in the process
control table.

II.b.3 Current State

Although the entire system has not been implemented, the mechanism of this
client/server model has been established. We have a working mcp, dbbat, client
and server. The database has been redefined with SQL. The client/server has
been tested on the old RDML, the RDO defined relations, as well as the new SQL
defined the database. The server can provide type 1 service. The server will
invoke the database, fetch all the required steps and pass them to the client in the
reply message. The client then will decode the message and write the message
into a .dsp file. This .dsp file will serve as a command procedure for dbbat
process. Dbbat requests a job through the client and gets it back as a command
procedure to be executed.

Our first test used a CZCS data file and three command procedures for L2
conversion, L3 conversion, and a mapped image file. Some appropriate steps
reflecting these three command procedures were put into the database. Dbbat
obtained the job steps from the database through the client/server, and when the
command procedure was executed, a mosaic image was produced.

Our second test used AVHRR. The database is defined in SQL. In this test, our
server was able to fetch the steps and pass them back to client. Although the
client wrote a command procedure, it was not executed.

The type 2 and type 3 services are being coded.

II.c FUTURE EFFORTS

Work will continue on types 2 and 3 services. We will need to develop a resource
manager and performance monitor in concert with GSFC. We also need an error
handler, which will be easier to write when our system is more fully defined.

II.d PROBLEMS ENCOUNTERED

II.d.1 The client/server was simplified to minimize message exchange.

II.d.2. Determination of the number and timing of interprocess messages.

In an attempt to reduce network traffic, interprocess communication has been
deliberately held to a minimum. The initial plan was to have dbbat communicate
through client/server twice with the database, first time to acquire a job and
second time to indicate job completion. While this plan worked, there were
problems when there were no pending jobs. In this case, mcp would fork dbbat
whenever resources are adequate; this wasted resources. The design was
modified to let mcp contact the database. When resources are adequate and
there is a job for dbbat, then mcp will activate a dbbat. When the task is
complete, mcp will send a message to update the database.

II.d.3. We need to have a mechanism to control the batch jobs, the dbbat forking
must be monitored and queued. A method for dealing with abnormal
termination of dbbat jobs is required.

The release of dbbat batch jobs must be monitored and queued in a controlled
manner. The queuing mechanism development must be completed. Further
development is required to provide a progress monitoring facility and allow the
query and manipulation of the batch queue. This reinforces the requirement to
develop a complete monitoring package for the system.

==

III. DATA MATCHUP (P)

III.a NEAR TERM OBJECTIVES

Adding additional matchups to the database is clearly a near term objective.
Examining ancillary datasets to determine their applicability within the matchup
concept will continue.

III.b OVERVIEW OF CURRENT PROGRESS

A MATCHUP database includes various in situ and satellite quantities,
coincident (or nearly coincident) in space and time. The MATCHUP database can
be used to monitor sensor calibration and to test and improve geophysical
algorithms. We have been developing a general methodology for doing
matchups. There are four main steps:

a. Compilation of in situ sea surface temperature (SST) and other environmental
data.

b. Development of a generic methodology for the identification of NOAA
spacecraft orbits that coincide (within a specified time-space window) with in
situ observations.

c. Extraction of AVHRR data corresponding to times and locations where in situ
data exist.

d. Matchup of in situ and AVHRR data.

Step One involves compiling and reformatting the in situ data, primarily fixed
and drifting buoy data. Reformatting is mainly a redating; it is easier to do
matchups if the time coordinates are continuous. The date is converted into
seconds relative to a reference data.

Step Two is the generation of a reduced list of in situ data. We have chosen to use
orbit routines in DSP to generate a list of "times of closest approach" (TCAP). The
TCAP methodology is generic in nature and can be used for any spacecraft,
provided an orbital model is available. Its advantages are: (a) it reduces the
volume of in situ data to consider further, (b) it provides a limited list of satellite
orbits from which data are to be extracted.

Two checks are made; the first ensures that the observations fall within a
specified temporal window and the second check ensures that the in situ location
falls within the area scanned by the sensor. These steps produce a series of times,
lats and lons of in situ observations, which will be fed to the extraction routines
(the following step). This step excludes a significant amount of the in situ data.

Step Three extracts satellite data for the times and locations specified above. This
step is sensor-specific and a decision must be made what data to extract. For
example, using AVHRR, we extract data for a 3x3 pixel box centered at the in situ
location for all 5 channels, plus geometric and sensor info (sat zenith angle, solar
zenith angle, baseplate temperature).

Step Four merges the in situ and satellite extractions, building the MATCHUP
data set. This step involves a further verification that the data fall within the
specified time/space windows. The MATCHUP database can then be used for
calibration and algorithm development and validation.

The experimental MATCHUP database is now being used to test new SST
algorithms and criteria for cloud identification

III.c FUTURE ACTIVITIES

The MATCHUP database will be expanded and testing using the database will
continue.

III.d PROBLEMS ENCOUNTERED

III.d.1 The GSFC group will no longer participate in the compilation of moored
buoy data. We will need support to continue this activity (and we have already
received some 1981 buoy data from NODC).

III.d.2 Similar to Problem 1, it involves lack of programming support for the
compilation and processing of drifter data sets.

III.d.3 There was an error in our TCAP routines that results in lack of prediction
for some locations.

Jim Brown has examined the prediction problem and, as a result, acquired a new
set of TCAP routines from D. Baldwin (U. Colorado). After evaluating the
implementation of the new TCAP program, it was determined that the
improvement overcame many of the known problems. At this point, lists of
global extractions can be generated.

